Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Coastal systems can exhibit large variability in pH compared to open marine conditions, thus the impacts of ocean acidification (OA) on their resident calcifying organisms are potentially magnified. Further, our understanding of the natural baseline and variability of pH is spatially and temporally limited in coastal settings. In the few coastal locations that have been monitoring seawater pH, records are generally limited to <10 years and are thus unable to provide the full range of centennial to decadal natural variability. This is the case for the Gulf of Maine (northwestern Atlantic), a highly productive region of strategic importance to U.S. fisheries, that is facing multiple environmental stressors including rapid warming and threats from OA. Paleoceanographic proxy records are therefore much needed in this region to reconstruct past pH conditions beyond instrumental records. A clear candidate for this is the boron isotope (d11B) pH proxy provided the d11B sensitivity to pH in long-lived shallow water marine carbonates can be established. To this end, we grew juvenile and adult Arctica islandica (ocean quahog) in flowing seawater tanks for 20.5 weeks in controlled pH (7.4, 7.6, 7.8 or 8.0 (ambient) ± 0.02) and temperature (6, 9 or 12 ± 0.56 °C) conditions at Bowdoin College’s Schiller Coastal Studies Center, Harpswell, Maine (USA). The clams were stained twice with calcein and supplemented with food (Shellfish Diet) throughout the experiment to ensure suitable growth. New shell growth (average 67% increase in maximum shell height and 522% increase in buoyant weight across all treatments), constrained by calcein markings, were sampled for boron isotope analysis (d11B) to determine if shell d11B varied as a function of pH similar to many other calcifying organisms. The results of the culture experiment will yield whether or not Arctica islandica preserves seawater pH information in their shells. If so, the transfer function relating shell d11B to pH will be used to hindcast pH in the central coastal region of the Gulf of Maine during recent centuries. Alternatively, if the shell d11B signal is independent of ambient seawater pH, this may reveal the capacity of Arcticamore » « less
-
Coastal systems can exhibit large variability in pH compared to open marine conditions, thus the impacts of ocean acidification (OA) on their resident calcifying organisms are potentially magnified. Further, our understanding of the natural baseline and variability of pH is spatially and temporally limited in coastal settings. In the few coastal locations that have been monitoring seawater pH, records are generally limited to <10 years and are thus unable to provide the full range of centennial to decadal natural variability. This is the case for the Gulf of Maine (northwestern Atlantic), a highly productive region of strategic importance to U.S. fisheries, that is facing multiple environmental stressors including rapid warming and threats from OA. Paleoceanographic proxy records are therefore much needed in this region to reconstruct past pH conditions beyond instrumental records. A clear candidate for this is the boron isotope (d11B) pH proxy provided the d11B sensitivity to pH in long-lived shallow water marine carbonates can be established. To this end, we grew juvenile and adult Arctica islandica (ocean quahog) in flowing seawater tanks for 20.5 weeks in controlled pH (7.4, 7.6, 7.8 or 8.0 (ambient) ± 0.02) and temperature (6, 9 or 12 ± 0.56 °C) conditions at Bowdoin College’s Schiller Coastal Studies Center, Harpswell, Maine (USA). The clams were stained twice with calcein and supplemented with food (Shellfish Diet) throughout the experiment to ensure suitable growth. New shell growth (average 67% increase in maximum shell height and 522% increase in buoyant weight across all treatments), constrained by calcein markings, were sampled for boron isotope analysis (d11B) to determine if shell d11B varied as a function of pH similar to many other calcifying organisms. The results of the culture experiment will yield whether or not Arctica islandica preserves seawater pH information in their shells. If so, the transfer function relating shell d11B to pH will be used to hindcast pH in the central coastal region of the Gulf of Maine during recent centuries. Alternatively, if the shell d11B signal is independent of ambient seawater pH, this may reveal the capacity of Arctica islandica to regulate internal calcifying fluid chemistry and their resilience to OA.more » « less
-
The Gulf of Maine is a highly productive and economically important region in the northwestern Atlantic that has undergone rapid warming in recent decades and is susceptible to ocean acidification (OA). These stressors may have substantial impacts on local fisheries. Therefore, understanding the combined effects of warming and OA to commercially important shellfish is vital. To test responses to warming and OA, Mercenaria mercenaria (hard clam), Mya arenaria (soft-shell clam), Plactopectin magellanicus (sea scallop), and both juvenile and adult Arctica islandica (ocean quahog) were grown in flowing seawater tanks for 20.5 weeks in controlled pH (7.4, 7.6, 7.8 or 8.0 (ambient) ± 0.02) and temperature (6, 9 or 12 ± 0.56 °C) conditions at Bowdoin College’s Schiller Coastal Studies Center. The specimens’ diet was supplemented with high-quality food (Shellfish Diet) throughout the experiment. Temperature effects were a significant contributor in all shell growth metrics (maximum height, dry weight and buoyant weight) in all species except the height and dry weight of adult A. islandica. Additionally, pH effects were significant in the height of M. mercenaria and in the dry weight of juvenile A. islandica samples. Overall, mortality rates ranged from 1.5% in juvenile A. islandica to 24% in M. mercenaria, with results varying by species and treatment conditions. Additionally, differences in final shell condition were noted among the various treatments indicating that, although most of the organisms survived and grew, the elevated temperature and/or lower pH conditions might not have been ideal for thriving. Considering all results of growth and survival, the four species showed a differential response to the same warming and acidification conditions. As suggested by prior research, the availability of high-quality food may allow certain species to tolerate the future warming and/or OA conditions modeled in this experiment. Experimental results may reveal the species-specific resiliency of economically valuable shellfish to changing ocean conditions as well as guide future planning to safeguard regional ecosystems and fisheries.more » « less
An official website of the United States government

Full Text Available